

Chapter 8

Electron Configuration and Chemical Periodicity

Electron Configuration and Chemical Periodicity

8.1 Characteristics of Many-Electron Atoms

8.2 The Quantum-Mechanical Model and the Periodic Table
8.3 Trends in Three Atomic Properties
8.4 Atomic Properties and Chemical Reactivity

8-3

Figure 8.1 The effect of electron spin.

Table 8.1 Summary of Quantum Numbers of Electrons in Atoms

Name	Symbol	Permitted Values	Property
principal	n	positive integers $(1,2,3, \ldots)$	orbital energy (size)
angular	l	integers from 0 to $n-1$	orbital shape (The l values $0,1,2$, and 3 correspond to s, p, d, and f orbitals, momentum
respectively.)			
magnetic	m_{l}	integers from $-l$ to 0 to $+l$	orbital orientation
spin	m_{s}	$+1 / 2$ or $-1 / 2$	direction of $e^{-s p i n}$

Quantum Numbers and The Exclusion Principle

Each electron in any atom is described completely by a set of four quantum numbers.
The first three quantum numbers describe the orbital, while the fourth quantum number describes electron spin.

Pauli's exclusion principle states that no two electrons in the same atom can have the same four quantum numbers.

An atomic orbital can hold a maximum of two electrons and they must have opposing spins.

8-6

Factors Affecting Atomic Orbital Energies

- The energies of atomic orbitals are affected by
- nuclear charge (Z) and
- shielding by other electrons.
- A higher nuclear charge increases nucleus-electron interactions and lowers sublevel energy.
- Shielding by other electrons reduces the full nuclear charge to an effective nuclear charge ($Z_{\text {eff }}$).
$-Z_{\text {eff }}$ is the nuclear charge an electron actually experiences.
- Orbital shape also affects sublevel energy.

8-7

Shielding and Orbital Energy

- Electrons in the same energy level shield each other to some extent.
- Electrons in inner energy levels shield the outer electrons very effectively.
- The farther from the nucleus an electron is, the lower the $Z_{\text {eff }}$ for that particular electron.

Figure 8.2 Penetration and sublevel energy.

Splitting of Levels into Sublevels

Each energy level is split into sublevels of differing energy. Splitting is caused by penetration and its effect on shielding.

For a given n value, a lower l value indicates a lower energy sublevel.

Order of sublevel energies: $s<p<d<f$

Figure 8.3
Order for filling energy sublevels with electrons.

In general, energies of sublevels increase as n increases ($1<2<3$, etc.) and as l increases $(s<p<d<f)$.

As n increases, some sublevels overlap.

Electron Configurations and Orbital Diagrams

Electron configuration is indicated by a shorthand notation:

Orbital diagrams make use of a box, circle, or line for each orbital in the energy level. An arrow is used to represent an electron and its spin.

A vertical orbital diagram for the Li ground state.

8-13

Building Orbital Diagrams

The aufbau principle is applied - electrons are always placed in the lowest energy sublevel available.

$$
\mathrm{H}(Z=1) 1 s^{1} \frac{\uparrow}{1 s}
$$

The exclusion principle states that each orbital may contain a maximum of 2 electrons, which must have opposite spins.

$$
\mathrm{He}(Z=2) 1 s^{2}
$$

Building Orbital Diagrams

Hund's rule specifies that when orbitals of equal energy are available, the lowest energy electron configuration has the maximum number of unpaired electrons with parallel spins.

$$
\mathrm{N}(Z=7) 1 s^{2} 2 s^{2} 2 p^{3}
$$

8-15

Sample Problem 8.1 Determining Quantum Numbers from

 Orbital DiagramsPROBLEM: Write a set of quantum numbers for the third electron and a set for the eighth electron of the F atom.

PLAN: Identify the electron of interest and note its level (n), sublevel, ($)$, orbital $\left(m_{l}\right)$ and spin $\left(m_{s}\right)$. Count the electrons in the order in which they are placed in the diagram.

SOLUTION:

For the $3^{\text {rd }}$ electron: $\boldsymbol{n}=2, l=0, \boldsymbol{m}_{l}=0, \boldsymbol{m}_{s}=+1 / 2$

For the $8^{\text {th }}$ electron: $n=2, l=1, m_{l}=0, m_{s}=-1 / 2$

Partial Orbital Diagrams and Condensed Configurations

A partial orbital diagram shows only the highest energy sublevels being filled.
$\mathrm{Al}(Z=13) 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$

$3 s$

$3 p$

A condensed electron configuration has the element symbol of the previous noble gas in square brackets.

Al has the condensed configuration $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$

Table 8.2 Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 3.

*Colored type indicates the sublevel to which the last electron is added.
†The full configuration is not usually written with square brackets; they are included here to show how the [Ne] designation arises.

Electron Configuration and Group

Elements in the same group of the periodic table have the same outer electron configuration.

Elements in the same group of the periodic table exhibit similar chemical behavior.

Similar outer electron configurations correlate with similar chemical behavior.

8-19

Figure 8.4 Condensed electron configurations in the first three periods.

		1A (1)							$\begin{gathered} \hline 8 \mathrm{~A} \\ (18) \end{gathered}$
$\begin{aligned} & \text { 응 } \\ & 0 \end{aligned}$		1							2
	1	$\begin{gathered} \mathbf{H} \\ 1 s^{1} \end{gathered}$	2A (2)	$\begin{array}{r} 3 A \\ (13) \\ \hline \end{array}$	$\begin{array}{r} 4 \mathrm{~A} \\ (14) \\ \hline \end{array}$	$\begin{array}{r} 5 A \\ (15) \\ \hline \end{array}$	$\begin{gathered} 6 A \\ (16) \end{gathered}$	$\begin{gathered} 7 A \\ (17) \\ \hline \end{gathered}$	$1 s^{2}$
	2	$\begin{gathered} 3 \\ \mathbf{L i} \\ {[\mathrm{He}] 2 s^{1}} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ {[\mathrm{He}] 2 s^{2}} \end{gathered}$	$\begin{gathered} 5 \\ \mathbf{B} \\ {[\mathrm{He}] 2 s^{2} 2 p^{1}} \end{gathered}$	$\left\|\begin{array}{c} 6 \\ \mathbf{C} \\ {[\mathrm{He}] 2 s^{2} 2 p^{2}} \end{array}\right\|$	$\begin{gathered} 7 \\ \mathbf{N} \\ {[\mathrm{He}] 2 s^{2} 2 p^{3}} \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ {[\mathrm{He}] 2 s^{2} 2 p^{4}} \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ {[\mathrm{He}] 2 s^{2} 2 p^{5}} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ {[\mathrm{He}] 2 s^{2} 2 p^{6}} \end{gathered}$
	3	$\begin{gathered} 11 \\ \mathrm{Na} \\ {[\mathrm{Ne}] 3 s^{1}} \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ {[\mathrm{Ne}] 3 s^{2}} \end{gathered}$	13 $\mathbf{A l}$ $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ {[\mathrm{Ne}] 3 s^{2} 3 p^{2}} \end{gathered}$	15 \mathbf{P} $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$	$\begin{gathered} 16 \\ \mathbf{S} \\ {[\mathrm{Ne}] 3 s^{2} 3 p^{4}} \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{CI} \\ {[\mathrm{Ne}] 3 s^{2} 3 p^{5}} \end{gathered}$	18 $\mathbf{A r}$ $[\mathrm{Ne}] 3 s^{2} 3 p^{6}$

Table 8.3 Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 4.

Atomic Number	Element	Partial Orbital Diagram ($4 s, 3 d$, and $4 p$ Sublevels Only)									Full Electron Configuration	Condensed Electron Configuration
		$4 s$			3d				$4 p$			
19	K	\uparrow									$1 s^{2} 2 s^{2} 22 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$	$[\mathrm{Ar}] 4{ }^{1}$
20	Ca	$\uparrow \downarrow$									$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$	$[\mathrm{Ar}] 4 s^{2}$
21	Sc	$\uparrow \downarrow$	\uparrow								$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$	[Ar] $4 s^{2} 3 d^{1}$
22	Ti	$\uparrow \downarrow$	\uparrow	\uparrow							$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$	[Ar] $4 s^{2} 3 d^{2}$
23	V	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow						$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$	[Ar] $4 s^{2} 3 d^{3}$
24	Cr	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$	[Ar] $4 s^{1} 3 d^{5}$
25	Mn	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$	[Ar] $4 s^{2} 3 d^{5}$
26	Fe	$\uparrow \downarrow$	$\uparrow \downarrow$	\| \uparrow	\uparrow	\uparrow	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$	$[\mathrm{Ar}] 4 s^{2} 3 d^{6}$
27	Co	$\uparrow \downarrow$	$\uparrow \downarrow$	$\mid \uparrow \downarrow$	\| \uparrow	\uparrow	\uparrow				$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}$	[Ar] 4s ${ }^{2} 3 d^{7}$

*Colored type indicates the sublevel to which the last electron is added.

8-21

Table 8.3 Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 4.

Atomic Number	Element	Partial Orbital Diagram $(4 s, 3 d$, and $4 p$ Sublevels Only)	Full Electron Configuration

28	Ni	$\uparrow \downarrow$	¢ $\downarrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$		$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$	$\left[\mathrm{Ar]} 4 s^{2} 3 d^{8}\right.$
29	Cu	\uparrow	¢ $\downarrow \uparrow \downarrow \mid \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow$		$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$	[Ar] $4 s^{1} 3 d^{10}$
30	Zn	$\uparrow \downarrow$	¢ $\downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow$		$1 s^{2} s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$	[Ar] $4 s^{2} 3 d^{10}$
31	Ga	$\uparrow \downarrow$	¢ $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \mid \uparrow \downarrow \uparrow \downarrow$	\uparrow	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$	$\left[\mathrm{Ar]} 4 s^{2} 3 d^{10} 4 p^{1}\right.$
32	Ge	$\uparrow \downarrow$	ヘ的 $\uparrow \downarrow \mid \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow$	\uparrow \uparrow	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{2}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{2}$
33	As	$\uparrow \downarrow$	$\uparrow \downarrow\|\uparrow \downarrow \uparrow \downarrow\| \uparrow \downarrow \uparrow \downarrow$	\uparrow \uparrow \uparrow	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{3}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{3}$
34	Se	$\uparrow \downarrow$	¢ \downarrow \| $\downarrow \mid \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow$	$\uparrow \downarrow$ \|	$1 s^{2} 2 s^{2} 2 p p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{4}$
35	Br	$\uparrow \downarrow$	¢ $\downarrow \downarrow \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow$	¢ $\downarrow \downarrow \uparrow \downarrow \uparrow$	$1 s^{2} 2 s^{2} 2 p p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{5}$
36	Kr	$\uparrow \downarrow$	¢ $\downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow \downarrow$	१ $\downarrow \downarrow \uparrow \downarrow \uparrow \downarrow$	$1 s^{2} s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$	[Ar] $4 s^{2} 3 d^{10} 4 p^{6}$

*Colored type indicates the sublevel to which the last electron is added.

Figure 8.5 A periodic table of partial ground-state electron configurations.

Figure 8.6 Orbital filling and the periodic table.

The order in which the orbitals are filled can be obtained directly from the periodic table.

Aid to memorizing sublevel filling order.

Categories of Electrons

Inner (core) electrons are those an atom has in common with the pervious noble gas and any completed transition series.

Outer electrons are those in the highest energy level (highest n value).

Valence electrons are those involved in forming compounds.
For main group elements, the valence electrons are the outer electrons.
For transition elements, the valence electrons include the outer electrons and any ($n-1$) d electrons.

Sample Problem 8.2

PROBLEM: Using the periodic table on the inside cover of the text (not
Figure 8.5 or Table 8.3), give the full and condensed electron configurations, partial orbital diagrams showing valence electrons only, and number of inner electrons for the following elements:
(a) potassium
(b) technetium
(c) lead
(K; $Z=19$)
(Tc; $Z=43$)
($\mathrm{Pb} ; Z=82$)

PLAN: The atomic number gives the number of electrons, and the periodic table shows the order for filling orbitals. The partial orbital diagram includes all electrons added after the previous noble gas except those in filled inner sublevels.

8-27

Sample Problem 8.2

SOLUTION:

(a) For $\mathrm{K}(Z=19)$
full configuration
condensed configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
[Ar] $4 s^{1}$
partial orbital diagram

There are 18 inner electrons.

Sample Problem 8.2

SOLUTION:

(b) For $\mathrm{Tc}(Z=43)$
full configuration
condensed configuration
partial orbital diagram
partial
$5 s$

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{5}$
$[\mathrm{Kr}] 5 s^{2} 4 d^{5}$

There are 36 inner electrons.

8-29

Sample Problem 8.2

SOLUTION:

(a) For $\mathrm{Pb}(Z=82)$
full configuration $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{2}$
condensed configuration $\quad[\mathrm{Xe}] 6 s^{2} 4 f^{\prime 4} 5 d^{10} 6 p^{2}$
partial orbital diagram

There are 78 inner electrons.

Figure 8.7 Defining atomic size.

A. The metallic radius of aluminum.

B. The covalent radius of chlorine.

C. Known covalent radii and distances between nuclei can be used to find unknown radii.

Trends in Atomic Size

Atomic size increases as the principal quantum number n increases.
As n increases, the probability that the outer electrons will be farther from the nucleus increases.

Atomic size decreases as the effective nuclear charge $Z_{\text {eff }}$ increases.
As $Z_{\text {eff }}$ increases, the outer electrons are pulled closer to the nucleus.
For main group elements: atomic size increases down a group in the periodic table and decreases across a period.

8-32

Figure 8.8

Atomic radii of the maingroup and transition elements.

8-33

Figure $8.9 \quad$ Periodicity of atomic radius.

Sample Problem 8.3 Ranking Elements by Atomic Size

PROBLEM: Using only the periodic table (not Figure 8.8), rank each set of main-group elements in order of decreasing atomic size:
(a) $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Sr}$
(b) $\mathrm{K}, \mathrm{Ga}, \mathrm{Ca}$
(c) $\mathrm{Br}, \mathrm{Rb}, \mathrm{Kr}$
(d) $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Rb}$

PLAN: Locate each element on the periodic table. Main-group elements increase in size down a group and decrease in size across the period.

8-35

Sample Problem 8.3
SOLUTION:
(a) $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}$
Ca, Mg, and Sr are in Group 2A. Size increases down the group.
(b) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ga}$

K, Ga, and Ca are all in Period 4. Size decreases across the period.
(c) $\mathrm{Rb}>\mathrm{Br}>\mathrm{Kr}$
$R b$ is the largest because it has one more energy level than the other elements. Kr is smaller than Br because Kr is further to the right in the same period.
(d) $\mathrm{Rb}>\mathrm{Sr}>\mathrm{Ca}$

Ca is the smallest because it has one fewer energy level. Sr is smaller than Rb because it is smaller to the right in the same period.

Trends in Ionization Energy

Ionization energy (IE) is the energy required for the complete removal of 1 mol of electrons from 1 mol of gaseous atoms or ions.

Atoms with a low IE tend to form cations.
Atoms with a high IE tend to form anions (except the noble gases).
lonization energy tends to decrease down a group and increase across a period.

Figure 8.10 Periodicity of first ionization energy $\left(\mathrm{IE}_{1}\right)$.

Figure 8.11 First ionization energies of the main-group elements.

Sample Problem 8.4
Ranking Elements by First Ionization Energy

PROBLEM: Using the periodic table only, rank the elements in each of the following sets in order of decreasing IE_{1} :
(a) $\mathrm{Kr}, \mathrm{He}, \mathrm{Ar}$
(b) $\mathrm{Sb}, \mathrm{Te}, \mathrm{Sn}$
(c) $\mathrm{K}, \mathrm{Ca}, \mathrm{Rb}$
(d) I, Xe, Cs

PLAN: Find each element on the periodic table. IE_{1} generally decreases down a group and increases across a period.

SOLUTION:

(a) $\mathrm{He}>\mathrm{Ar}>\mathrm{Kr}$
Kr, He, and Ar are in Group 8A. IE_{1} decreases down the group.

Sample Problem 8.4

SOLUTION:

(b) $\mathrm{Te}>\mathrm{Sb}>\mathrm{Sn}$
Sb, Te, and Sn are in Period $5 . \mathrm{IE}_{1}$ increases across a period.
(c) $\mathbf{C a}>\mathrm{K}>\mathrm{Rb}$
K has a higher IE_{1} than Rb because K is higher up in Group 1 A . Ca has a higher IE_{1} than K because Ca is further to the right in Period 4.
(d) $\mathrm{Xe}>$ I $>$ Cs

Xe has a higher IE_{1} than I because Xe is further to the right in the same period. Cs has a lower $I E_{1}$ than I because it is further to the left in a higher period.

8-41

Figure 8.12 The first three ionization energies of beryllium.

Table 8.4 Successive Ionization Energies of the Elements Lithium Through Sodium

Z	Element	Number of Valence Electrons	Ionization Energy (MJ/mol)*									
			IE_{1}	IE_{2}	IE_{3}	IE_{4}	$1 E_{5}$	$1 \mathrm{E}_{6}$	IE_{7}	IE_{8}	IE_{9}	IE_{10}
3	Li	1	0.52	7.30	11.81							
4	Be	2	0.90	1.76	14.85	21.01			CORE	LECT	NS	
5	B	3	0.80	2.43	3.66	25.02	32.82					
6	C	4	1.09	2.35	4.62	6.22	37.83	47.28				
7	N	5	1.40	2.86	4.58	7.48	9.44	53.27	64.36			
8	O	6	1.31	3.39	5.30	7.47	10.98	13.33	71.33	84.08		
9	F	7	1.68	3.37	6.05	8.41	11.02	15.16	17.87	92.04	106.43	
10	Ne	8	2.08	3.95	6.12	9.37	12.18	15.24	20.00	23.07	115.38	131.43
11	Na	1	0.50	4.56	6.91	9.54	13.35	16.61	20.11	25.49	28.93	141.37

$\star \mathrm{MJ} / \mathrm{mol}$, or megajoules per mole $=10^{3} \mathrm{~kJ} / \mathrm{mol}$.

8-43

Sample Problem 8.5

Identifying an Element from Its lonization Energies

PROBLEM: Name the Period 3 element with the following ionization energies (in $\mathrm{kJ} / \mathrm{mol}$) and write its electron configuration:

$I E_{1}$	$I E_{2}$	$I E_{3}$	IE_{4}	IE_{5}	IE_{6}
1012	1903	2910	4956	6278	22,230

PLAN: Look for a large increase in IE, which occurs after all valence electrons have been removed.

SOLUTION:

The largest increase occurs after IE_{5}, that is, after the 5th valence electron has been removed. The Period 3 element with 5 valence electrons is phosphorus ($P ; Z=15$).
The complete electron configuration is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$.

Trends in Electron Affinity

Electron Affinity (EA) is the energy change that occurs when 1 mol of electrons is added to 1 mol of gaseous atoms or ions.

Atoms with a Iow EA tend to form cations.
Atoms with a high EA tend to form anions.

The trends in electron affinity are not as regular as those for atomic size or IE.

Figure 8.13 Electron affinities of the main-group elements (in kJ/mol).

$\begin{aligned} & \text { 1A } \\ & \text { (1) } \\ & \hline \end{aligned}$							$\begin{array}{r} 8 \mathrm{~A} \\ (18) \\ \hline \end{array}$
$\begin{gathered} \mathbf{H} \\ -72.8 \end{gathered}$	2A (2)	$\begin{array}{r} 3 A \\ (13) \\ \hline \end{array}$	$\begin{array}{r} \text { 4A } \\ (14) \\ \hline \end{array}$	$\begin{gathered} 5 \mathrm{~A} \\ (15) \end{gathered}$	$\begin{array}{r} 6 A \\ (16) \\ \hline \end{array}$	$\begin{array}{r} 7 A \\ (17) \\ \hline \end{array}$	$\begin{gathered} \mathrm{He} \\ (0.0) \end{gathered}$
$\begin{gathered} \mathbf{L i} \\ -59.6 \end{gathered}$	$\begin{aligned} & \mathrm{Be} \\ & \leq 0 \end{aligned}$	$\begin{gathered} \text { B } \\ -26.7 \end{gathered}$	$\begin{gathered} \mathbf{C} \\ -122 \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & +7 \end{aligned}$	$\begin{gathered} 0 \\ -141 \end{gathered}$	$\begin{gathered} \mathbf{F} \\ -328 \end{gathered}$	$\begin{gathered} \mathrm{Ne} \\ (+29) \end{gathered}$
$\begin{gathered} \mathrm{Na} \\ -52.9 \end{gathered}$	$\begin{gathered} \mathbf{M g} \\ \leq 0 \end{gathered}$	$\begin{gathered} \text { AI } \\ -42.5 \end{gathered}$	$\begin{gathered} \mathbf{S i} \\ -134 \end{gathered}$	$\begin{gathered} \mathbf{P} \\ -72.0 \end{gathered}$	$\begin{gathered} \mathbf{S} \\ -200 \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ -349 \end{gathered}$	$\begin{gathered} \text { Ar } \\ (+35) \end{gathered}$
$\begin{gathered} \mathrm{K} \\ -48.4 \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ -2.37 \end{gathered}$	$\begin{gathered} \mathbf{G a} \\ -28.9 \end{gathered}$	$\begin{gathered} \text { Ge } \\ -119 \end{gathered}$	$\begin{gathered} \text { As } \\ -78.2 \end{gathered}$	$\begin{gathered} \mathrm{Se} \\ -195 \end{gathered}$	$\begin{gathered} \mathrm{Br} \\ -325 \end{gathered}$	$\begin{gathered} \mathbf{K r} \\ (+39) \end{gathered}$
$\begin{gathered} \mathbf{R b} \\ -46.9 \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ -5.03 \end{gathered}$	$\begin{gathered} \text { In } \\ -28.9 \end{gathered}$	$\begin{gathered} \text { Sn } \\ -107 \end{gathered}$	$\begin{gathered} \mathbf{S b} \\ -103 \end{gathered}$	$\begin{gathered} \mathrm{Te} \\ -190 \end{gathered}$	$\begin{gathered} \text { I } \\ -295 \end{gathered}$	$\underset{(+41)}{\mathrm{Xe}}$
$\begin{gathered} \text { Cs } \\ -45.5 \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ -13.95 \end{gathered}$	$\begin{gathered} \text { TI } \\ -19.3 \end{gathered}$	$\begin{gathered} \mathbf{P b} \\ -35.1 \end{gathered}$	$\begin{gathered} \mathbf{B i} \\ -91.3 \end{gathered}$	$\begin{gathered} \text { Po } \\ -183 \end{gathered}$	$\begin{gathered} \text { At } \\ -270 \end{gathered}$	$\underset{(+41)}{\text { Rn }}$

Behavior Patterns for IE and EA

Reactive nonmetals have high IEs and highly negative EAs.
These elements attract electrons strongly and tend to form negative ions in ionic compounds.

Reactive metals have low IEs and slightly negative EAs. These elements loose electrons easily and tend to form positive ions in ionic compounds.

Noble gases have very high IEs and slightly positive EAs. These elements tend to neither lose nor gain electrons.

Figure 8.14 Trends in three atomic properties.

Metallic Behavior

- Metals are typically shiny solids with moderate to high melting points.
- Metals are good conductors of heat and electricity, and can easily be shaped.
- Metals tend to lose electrons and form cations, i.e., they are easily oxidized.
- Metals are generally strong reducing agents.
- Most metals form ionic oxides, which are basic in aqueous solution.

8-49

Figure 8.15 Trends in metallic behavior.

Acid-Base Behavior of Oxides

Main-group metals form ionic oxides, which are basic in aqueous solution.

Main-group nonmetals form covalent oxides, which are acidic in aqueous solution.

Some metals and metalloids form amphoteric oxides, which can act as acids or bases in water:

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{O}_{3}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{AlCl}_{3}(a q)+3 \mathrm{H}_{2} \mathrm{O}() \\
& \mathrm{Al}_{2} \mathrm{O}_{3}(s)+2 \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}(a q)
\end{aligned}
$$

Figure 8.16 Acid-base behavior of some element oxides.

Oxides become more basic down a group and more acidic across a period.

Electron configurations of Monatomic lons

Elements at either end of a period gain or lose electrons to attain a filled outer level. The resulting ion will have a noble gas electron configuration and is said to be isoelectronic with that noble gas.

$$
\begin{aligned}
& \mathrm{Na}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}\right) \rightarrow \mathrm{e}^{-}+ \mathrm{Na}^{+}\left([\mathrm{He}] 2 s^{2} 2 p^{6}\right) \\
& \\
& {[\text { isoelectronic with } \mathrm{Ne}] }
\end{aligned}
$$

$$
\operatorname{Br}\left([\operatorname{Ar}] 4 s^{2} 3 d^{10} 4 p^{5}\right)+\mathrm{e}^{-} \rightarrow \operatorname{Br}^{-}\left([\operatorname{Ar}] 4 s^{2} 3 d^{10} 4 p^{6}\right)
$$

[isoelectronic with Kr]

Figure 8.17 Main-group elements whose ions have noble gas electron configurations.

Electron Configurations of Monatomic lons

A pseudo-noble gas configuration is attained when a metal atom empties its highest energy level.
The ion attains the stability of empty $n s$ and $n p$ sublevels and a filled $(n-1) d$ sublevel.

$$
\mathrm{Sn}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{2}\right) \rightarrow 4 \mathrm{e}^{-}+\mathrm{Sn}^{4+}\left([\mathrm{Kr}] 4 d^{10}\right)
$$

A metal may lose only the $n p$ electrons to attain an inert pair configuration.
The ion attains the stability of a filled $n s$ and ($n-1$) d sublevels.

$$
\mathrm{Sn}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{2}\right) \rightarrow 2 \mathrm{e}^{-}+\mathrm{Sn}^{2+}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10}\right)
$$

Sample Problem 8.6 Writing Electron Configurations of Main-Group

 IonsPROBLEM: Using condensed electron configurations, write reactions for the formation of the common ions of the following elements:
(a) lodine ($Z=53$)
(b) Potassium ($Z=19$)
(c) Indium $(Z=49)$

PLAN: Identify the position of each element on the periodic table and recall that:

- Ions of elements in Groups 1A(1), 2A(2), 6A(16), and 7A(17) are usually isoelectronic with the nearest noble gas.
- Metals in Groups 3A(13) to 5A(15) can lose the $n s$ and $n p$ electrons or just the np electrons.

Sample Problem 8.6

SOLUTION:

(a) Iodine $(Z=53)$ is in Group 7A(17) and will gain one electron to be isoelectronic with $\mathrm{Xe}: \mathrm{I}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{5}\right)+\mathrm{e}^{-} \rightarrow \mathrm{I}^{-}\left([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{6}\right)$
(b) Potassium ($Z=19$) is in Group $1 \mathrm{~A}(1)$ and will lose one electron to be isoelectronic with $\mathrm{Ar}: \mathrm{K}\left([\mathrm{Ar}] 4 s^{1}\right) \rightarrow \mathrm{K}^{+}([\mathrm{Ar}])+\mathrm{e}^{-}$
(c) Indium ($Z=49$) is in Group 3A(13) and can lose either one electron or three electrons: $\operatorname{In}\left([K r] 5 s^{2} 4 d^{10} 5 p^{1}\right) \rightarrow \quad \ln +\left([K r] 5 s^{2} 4 d^{10}\right)+\mathrm{e}^{-}$

$$
\ln \left([K r] 5 s^{2} 4 d^{10} 5 p^{1}\right) \rightarrow \quad \ln ^{3+}\left([K r] 4 d^{10}\right)+3 e^{-}
$$

Figure 8.18 The crossover of sublevel energies in Period 4.

8-58

Magnetic Properties of Transition Metal Ions

A species with one or more unpaired electrons exhibits paramagnetism - it is attracted by a magnetic field.
$\mathrm{Ag}(Z=47)$

A species with all its electrons paired exhibits diamagnetism - it is not attracted (and is slightly repelled) by a magnetic field.

Figure 8.19 Measuring the magnetic behavior of a sample.

The apparent mass of a diamagnetic substance is unaffected by the magnetic field.

The apparent mass of a paramagnetic substance increases as it is attracted by the magnetic field.

Magnetic Properties of Transition Metal ions

Magnetic behavior can provide evidence for the electron configuration of a given ion.

Ti^{2+} has 2 unpaired electrons and is paramagnetic, providing evidence that the $4 s$ electrons are lost before the $3 d$ electrons.

Sample Problem 8.7 Writing Electron Configurations and Predicting Magnetic Behavior of Transition Metal Ions

PROBLEM: Use condensed electron configurations to write the reaction for the formation of each transition metal ion, and predict whether the ion is paramagnetic or diamagnetic.
(a) $\mathrm{Mn}^{2+}(\mathrm{Z}=25)$
(b) $\mathrm{Cr}^{3+}(\mathrm{Z}=24)$
(c) $\mathrm{Hg}^{2+}(\mathrm{Z}=80)$

PLAN: Write the condensed electron configuration for each atom, recalling the irregularity for Cr. Remove electrons, beginning with the ns electrons, and determine if there are any unpaired electrons.

Sample Problem 8.7

SOLUTION:

(a) $\mathrm{Mn}^{2+}(\mathrm{Z}=25) \mathrm{Mn}\left([\mathrm{Ar}] 4 s^{2} 3 d^{5}\right) \rightarrow \mathrm{Mn}^{2+}\left([\mathrm{Ar}] 3 d^{6}\right)+2 \mathrm{e}^{-}$

Since there are $5 d$ electrons they are all unpaired. Mn^{2+} is paramagnetic.
(b) $\mathrm{Cr}^{3+}(\mathrm{Z}=24) \mathrm{Cr}\left([\mathrm{Ar}] 4 s^{1} 3 d^{5}\right) \rightarrow \mathrm{Cr}^{3+}\left([\mathrm{Ar}] 3 d^{\beta}\right)+3 \mathrm{e}^{-}$

Since there are $3 d$ electrons they are all unpaired. Cr^{3+} is paramagnetic.
(c) $\mathrm{Hg}^{2+}(\mathrm{Z}=80) \mathrm{Hg}\left([\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10}\right) \rightarrow \mathrm{Hg}^{2+}\left([\mathrm{Xe}] 4 f^{14} 5 d^{10}\right)+2 e^{-}$

The $4 f$ and the $5 d$ sublevels are filled, so there are no unpaired electrons. Hg^{2+} is diamagnetic.

Ionic Size vs. Atomic Size

Cations are smaller than their parent atoms while anions are larger.
lonic radius increases down a group as n increases.
Cation size decreases as charge increases.
An isoelectronic series is a series of ions that have the same electron configuration. Within the series, ion size decreases with increasing nuclear charge.

$$
3->2->1->1+>2+>3+
$$

Figure $8.20 \quad$ Ionic radius.

Figure $8.21 \quad$ lonic vs. atomic radii.

Sample Problem $8.8 \quad$ Ranking lons by Size

PROBLEM: Rank each set of ions in order of decreasing size, and explain your ranking:
(a) $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Mg}^{2+}$
(b) $\mathrm{K}^{+}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}$
(c) $\mathrm{Au}^{+}, \mathrm{Au}^{3+}$

PLAN: Find the position of each element on the periodic table and apply the trends for ionic size.

SOLUTION:

(a) $\mathrm{Sr}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}$

All these ions are from Group 2A, so size increases down the group.

8-67

Sample Problem 8.8

SOLUTION:
(b) $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}$

These ions are isoelectronic, so size decreases as nuclear charge increases.
(c) $\mathrm{Au}^{+}>\mathrm{Au}^{3+}$

Cation size decreases as charge increases.

8-68

